2,733 research outputs found

    Adaptive sensing performance lower bounds for sparse signal detection and support estimation

    Get PDF
    This paper gives a precise characterization of the fundamental limits of adaptive sensing for diverse estimation and testing problems concerning sparse signals. We consider in particular the setting introduced in (IEEE Trans. Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the minimum signal magnitude for both detection and estimation: if xRn{\mathbf {x}}\in \mathbb{R}^n is a sparse vector with ss non-zero components then it can be reliably detected in noise provided the magnitude of the non-zero components exceeds 2/s\sqrt{2/s}. Furthermore, the signal support can be exactly identified provided the minimum magnitude exceeds 2logs\sqrt{2\log s}. Notably there is no dependence on nn, the extrinsic signal dimension. These results show that the adaptive sensing methodologies proposed previously in the literature are essentially optimal, and cannot be substantially improved. In addition, these results provide further insights on the limits of adaptive compressive sensing.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ555 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Adaptive Sensing for Estimation of Structured Sparse Signals

    Get PDF
    In many practical settings one can sequentially and adaptively guide the collection of future data, based on information extracted from data collected previously. These sequential data collection procedures are known by different names, such as sequential experimental design, active learning or adaptive sensing/sampling. The intricate relation between data analysis and acquisition in adaptive sensing paradigms can be extremely powerful, and often allows for reliable signal estimation and detection in situations where non-adaptive sensing would fail dramatically. In this work we investigate the problem of estimating the support of a structured sparse signal from coordinate-wise observations under the adaptive sensing paradigm. We present a general procedure for support set estimation that is optimal in a variety of cases and shows that through the use of adaptive sensing one can: (i) mitigate the effect of observation noise when compared to non-adaptive sensing and, (ii) capitalize on structural information to a much larger extent than possible with non-adaptive sensing. In addition to a general procedure to perform adaptive sensing in structured settings we present both performance upper bounds, and corresponding lower bounds for both sensing paradigms

    Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets

    Get PDF
    This paper investigates the problem of recovering the support of structured signals via adaptive compressive sensing. We examine several classes of structured support sets, and characterize the fundamental limits of accurately recovering such sets through compressive measurements, while simultaneously providing adaptive support recovery protocols that perform near optimally for these classes. We show that by adaptively designing the sensing matrix we can attain significant performance gains over non-adaptive protocols. These gains arise from the fact that adaptive sensing can: (i) better mitigate the effects of noise, and (ii) better capitalize on the structure of the support sets.Comment: to appear in IEEE Transactions on Information Theor

    Cliques in rank-1 random graphs: the role of inhomogeneity

    Get PDF
    We study the asymptotic behavior of the clique number in rank-1 inhomogeneous random graphs, where edge probabilities between vertices are roughly proportional to the product of their vertex weights. We show that the clique number is concentrated on at most two consecutive integers, for which we provide an expression. Interestingly, the order of the clique number is primarily determined by the overall edge density, with the inhomogeneity only affecting multiplicative constants or adding at most a loglog(n)\log\log(n) multiplicative factor. For sparse enough graphs the clique number is always bounded and the effect of inhomogeneity completely vanishes.Comment: 29 page

    Adaptive Selective Sampling for Online Prediction with Experts

    Full text link
    We consider online prediction of a binary sequence with expert advice. For this setting, we devise label-efficient forecasting algorithms, which use a selective sampling scheme that enables collecting much fewer labels than standard procedures, while still retaining optimal worst-case regret guarantees. These algorithms are based on exponentially weighted forecasters, suitable for settings with and without a perfect expert. For a scenario where one expert is strictly better than the others in expectation, we show that the label complexity of the label-efficient forecaster scales roughly as the square root of the number of rounds. Finally, we present numerical experiments empirically showing that the normalized regret of the label-efficient forecaster can asymptotically match known minimax rates for pool-based active learning, suggesting it can optimally adapt to benign settings

    Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation

    Full text link

    Anomaly Detection for a Large Number of Streams: A Permutation-Based Higher Criticism Approach

    Full text link
    Anomaly detection when observing a large number of data streams is essential in a variety of applications, ranging from epidemiological studies to monitoring of complex systems. High-dimensional scenarios are usually tackled with scan-statistics and related methods, requiring stringent modeling assumptions for proper calibration. In this work we take a non-parametric stance, and propose a permutation-based variant of the higher criticism statistic not requiring knowledge of the null distribution. This results in an exact test in finite samples which is asymptotically optimal in the wide class of exponential models. We demonstrate the power loss in finite samples is minimal with respect to the oracle test. Furthermore, since the proposed statistic does not rely on asymptotic approximations it typically performs better than popular variants of higher criticism that rely on such approximations. We include recommendations such that the test can be readily applied in practice, and demonstrate its applicability in monitoring the daily number of COVID-19 cases in the Netherlands
    corecore